- (+84) 383 096 717
- [email protected]
- 63 Vũ Ngọc Phan, Hà Nội
Format | |
---|---|
Skill | |
Source | |
Topic | |
Test Type | Matching Information, Multiple choise (1 answer), note/form/sentence completion, T/F/NG |
READING PASSAGE 1
You should spend about 20 minutes on Questions 1-13 which are based on Reading Passage 1 below.
Man of Machine?
A
During July 2003, the Museum of Science in Cambridge, Massachusetts exhibited what Honda calls ‘the world’s most advanced humanoid robot’, ASIMO (the Advanced Step in Innovative Mobility). Honda’s brainchild is on tour in North America and delighting audiences wherever it goes. After 17 years in the making, ASIMO stands at four feet tall, weighs around 115 pounds and looks like a child in an astronaut’s suit. Though it is difficult to see ASIMO’s face at a distance, on closer inspection it has a smile and two large ‘eyes’ that conceal cameras. The robot cannot work autonomously – its actions are ‘remote-controlled’ by scientist through the computer in its backpack. Yet watching AIMIO perform at a show in Massachusetts it seemed uncannily human. The audience cheered as ASIMO walked forwards and backwards, side to side and up and downstairs. After the show, a number of people told me that they would like robots to play more of a role in daily life – one even said that the robot would be like ‘another person’.
B
While the Japanese have made huge strides in solving some of the engineering problems of human kinetics and bipedal movements, for the past 10 years scientists at MIT’s former Artificial Intelligence (AI) lab (recently renamed the Computer Science and Artificial Intelligence Laboratory, CSAIL) have been making robots that can behave like humans and interact with humans. One of MIT’s robots, Kismet, is an anthropomorphic head and has two eyes (complete with eyelids), ears, a mouth, and eyebrows. It has several facial expressions, including happy, sad, frightened and disgusted. Human interlocutors are able to read some of the robot’s facial expressions, and often change their behavior towards the machine as a result – for example, playing with it when it appears ‘sad’. Kismet is now in MIT’s museum, but the ideas developed here continue to be explored in new robots.
C
Cog (short for Cognition) is another pioneering project from MIT’s former AI lab. Cog has a head, eyes, two arms, hands and a torso – and its proportions were originally measured from the body of a researcher in the lab. The work on Cog has been used to test theories of embodiment and developmental robotics, particularly getting a robot to develop intelligence by responding to its environment via sensors, and to learn through these types of interactions.
D
MIT is getting furthest down the road to creating human-like and interactive robots. Some scientists argue that ASIMO is a great engineering feat but not an intelligent machine – because it is unable to interact autonomously with unpredictabilities in its environment in meaningful ways, and learn from experience. Robots like Cog and Kismet and new robots at MIT’s CSAIL and media lab, however, are beginning to do this.
E
These are exciting developments. Creating a machine that can walk, make gestures and learn from its environment is an amazing achievement. And watch this space: these achievements are likely rapidly to be improved upon. Humanoid robots could have a plethora of uses in society, helping to free people from everyday tasks. In Japan, for example, there is an aim to create robots that can do the tasks similar to an average human and also act in more sophisticated situations as firefighters, astronauts or medical assistants to the elderly in the workplace and in homes – partly in order to counterbalance the effects of an ageing population.
F
Such robots say much about the way in which we view humanity, and they bring out the best and worst of us. On one hand, these developments express human creativity – our ability to invent, experiment, and to extend our control over the world. On the other hand, the aim to create a robot like a human being is spurred on by dehumanized ideas – by the sense that human companionship can be substituted by machines; that humans lose their humanity when they interact with technology; or that we a little more than surface and ritual behaviors, that can be simulated with metal and electrical circuits.
G
The tension between the dehumanised and creative aspects of robots has long been explored in culture. In Karel Capek’s Rossum’s Universal Robots, a 1921 play in which the term ‘robot’ was first coined, although Capek’s robots had human-like appearance and behaviour, the dramatist never thought these robots were human. For Capek, being human was about much more than appearing to be human. In part, it was about challenging a dehumanising system, and struggling to become recognised and given the dignity of more than a machine. A similar spirit would guide us well through twenty-first century experiments in robotics.
READING PASSAGE 2
You should spend about 20 minutes on Question 14-26 which are based on Reading Passage 2 below.
California’s Age of Megafires
Drought, housing expansion, and oversupply of tinder make for bigger, hotter fires.
There’s a reason tire squads now battling more than a dozen blazes in southern California are having such difficulty containing the flames, despite better preparedness than ever and decades of experience fighting fires fanned by the notorious Santa Ana winds. The wildfires themselves, experts say, generally are hotter, move faster, and spread more erratically than in the past.
Megafires, also called “siege fires,” are the increasingly frequent blazes that burn 500,000 areas or more — 10 times the size of the average forest fire of 20 years ago. One of the current wildfires is the sixth biggest in California ever, in terms of acreage burned, according to state figures and news reports.
The short-term explanation is that the region, which usually has dry summers, has had nine inches less rainfall than normal this year. Longer term, climate change across the West is leading to hotter days on average and longer fire seasons. The trend to more superhot fires, experts say, has been driven by a century-long policy of the US Forest Service to stop wildfires as quickly as possible. The unintentional consequence was to halt the natural eradication of underbrush, now the primary fuel for megafires.
Three other factors contribute to the trend, they add. First is climate change marked by a 1-degree F rise in average yearly temperature across the West. Second is a fire season that on average is 78 days longer than in the late 1980s. Third is increased building of homes and other structures in wooded areas. “We are increasingly building our homes … in fire-prone ecosystems,” says Dominik Kulakowski, adjunct professor of biology at Clark University Graduate School of Geography in Worcester, Mass. Doing that “in many of the forests of the Western US … is like building homes on the side of an active volcano.”
In California, where population growth has averaged more than 600,000 a year for at least a decade, housing has pushed into such areas. “What once was open space is now residential homes providing fuel to make fires burn with greater intensity, says Terry McHale of the California Department of Forestry firefighters union. With so much dryness, so many communities to catch fire, so many fronts to fight, it becomes an almost incredible job.”
That said, many experts give California high marks for making progress on preparedness since 2003, when the largest fires in state history scorched 750,000 acres, burned 3,640 homes, and killed 22 people. Stung then by criticism of bungling that allowed fires to spread when they might have been contained, personnel are meeting the peculiar challenges of neighborhood and canyon-hopping fires better than in recent years, observes say.
State promises to provide newer engines, planes and helicopters have been fulfilled. Firefighters unions that then complained of dilapidated equipment, old fire engines, and insufficient blueprints for fire safety are now praising the state’s commitment, noting that funding for firefighting has increased despite huge cuts in many other programs. “We are pleased that Schwarzenegger administration has been very proactive in its support of us and come through with budgetary support of the infrastructure needs we have long sought,” say Mr. HcHale with the firefighter union.
Besides providing money to upgrade the fire engines that must traverse the mammoth state and wind along serpentine canyon roads, the state has invested in better command-and-control facilities as well as the strategies to run them. “In the fire sieges of earlier years, we found out that we had the willingness of mutual-aid help from other jurisdictions and states, but we were not able to communicate adequately with them,” says Kim Zagaris, chief of the state’s Office of Emergency Services, fire and rescue branch. After a 2004 blue-ribbon commission examined and revamped those procedures, the statewide response “has become far more professional and responsive,” he says.
Besides ordering the California National Guard on Monday to make 1,500 guardsmen available for firefighting efforts, Gov. Arnold Schwarzenegger asked the Pentagon to send all available Modular Airborne Fighting Systems to the area. The military Lockheed C-130 cargo/utility aircraft carry a pressurized 3,000-gallon tank that can eject fire retardant or water in fewer than five seconds through two tubes at the rear of the plane. This load can cover an area 1/4-mile long and 60 feet wide to create a fire barrier. Governor Schwarzenegger also directed 2,300 inmate firefighters and 170 custody staff from the California Department of Corrections and Rehabilitation to work hand in hand with state and local firefighters.
Residents and government officials alike are noting the improvements with gratitude, even amid the loss of homes, churches, businesses, and farms. Despite such losses, there is a sense that the speed, dedication, and coordination of firefighters from several states and jurisdictions are resulting in greater efficiency than in past “siege fire” situations.
“I am extraordinarily impressed by the improvements we have witnessed between the last big fire and this,” says Ross Simmons, a San Diego-based lawyer who had to evacuate both his home and business on Monday, taking up residence at a Hampton Inn 30 miles south of his home in Rancho Bernardo. After fires consumed 172,000 acres there in 2003, the San Diego region turned community wide soul-searching into improved building codes, evacuation procedures, and procurement of new technology. Mr. Simmons and neighbors began receiving automated phone calls at 3:30 a.m. Monday morning telling them to evacuate. Notwithstanding all the damage that will be caused by this, we will not come close to the loss of life because of what we have put in place since then,” he says.
READING PASSAGE 3
You should spend about 20 minutes on Question 27-40 which are based on Reading Passage 3 below.
The Rainmaker
Sometimes ideas just pop up out of the blue. Or in Charlie Paton’s case, out of the rain. “I was in a bus in Morocco travelling through the desert,” he remembers. “It had been raining and the bus was full of hot, wet people. The windows steamed up and I went to sleep with a towel against the glass. When I woke, the thing was soaking wet. I had to wring it out. And it set me thinking. Why was it so wet?”
The answer, of course, was condensation. Back home in London, a physicist friend, Philip Davies, explained that the glass, chilled by the rain outside, had cooled the hot humid air inside the bus below its dew point, causing droplets of water to form on the inside of the window. Intrigued, Paton — a lighting engineer by profession — started rigging up his own equipment. “I made my own solar stills. It occurred to me that you might be able to produce j I water in this way in the desert, simply by cooling the air. I wondered whether you could make enough to irrigate fields and grow crops.”
Today, a decade on, his dream has taken shape as a giant greenhouse on a desert island off Abu Dhabi in the Persian Gulf — the first commercially viable version of his “seawater greenhouse”. Local scientists, working with Paton under a licence from his company Light Works, are watering the desert and growing vegetables in what is basically a giant dew-making machine that produces fresh water and cool air from sun and seawater. In awarding Paton first prize in a design competition two years ago, Marco Goldschmied, president of the Royal Institute of British Architects, called it “a truly original idea which has the potential to impact on the lives of millions of people living in coastal water-starved areas around the world”.
The design has three main parts (see Graphic). The greenhouse faces into the prevailing wind so that hot, dry desert air blows in through the front wall of perforated cardboard, kept wet and cool by a constant trickle of seawater pumped up from the nearby shoreline. The evaporating seawater cools and moistens the air. Last June, for example, when the temperature outside the Abu Dhabi greenhouse was 46°C, it was in the low 30s inside. While the air outside was dry, the humidity in the greenhouse was 90 percent. The cool, moist air allows the plants to grow faster, and because much less water evaporates from the leaves their demand for moisture drops dramatically. Paton’s crops thrived on a single litre of water per square metre per day, compared to 8 litres if they were growing outside.
The second feature also cools the air for the plants. Paton has constructed a double-layered roof with an outer layer of clear polythene and an inner, coated layer that reflects infrared light. Visible light can stream through to maximise photosynthesis, while heat from the infrared radiation is trapped in the space between the layers, away from the plants.
At the back of the greenhouse sits the third element, the main water-production unit. Just before entering this unit, the humid air of the greenhouse mixes with the hot, dry air from between the two layers of the roof. This means the air can absorb more moisture as it passes through a second moist cardboard wall. Finally, the hot saturated air hits a condenser. This is a metal surface kept cool by still more seawater — the equivalent of the window on Paton’s Moroccan bus. Drops of pure distilled water form on the condenser and flow into a tank for irrigating the crops.
The greenhouse more or less runs itself. Sensors switch everything on when the sun rises and alter flows of air and seawater through the day in response to changes in temperature, humidity and sunlight. On windless days, fans ensure a constant flow of air through the greenhouse. “Once it is tuned to the local environment, you don’t need anyone there for it to work,” says Paton. “We can run the entire operation off one 13-amp plug, and in future we could make it entirely independent of the grid, powered from a few solar panels.”
The net effect is to evaporate seawater into hot desert air, then recondense the moisture as fresh water. At the same time, cool moist air flows through the greenhouse to provide ideal conditions for the crops. The key to the seawater greenhouse’s potential is its unique combination of desalination and air conditioning. By tapping the power of the sun it can cool as efficiently as a 500-kilowatt air conditioner while using less than 3 kilowatts of electricity. In practice, it evaporates 3000 litres of seawater a day and turns it into about 800 litres of fresh water — just enough to irrigate the plants. The rest is lost as water vapour.
Critics point out that construction costs of £25 per square metre mean the water is twice as expensive as water from a conventional desalination plant. But the comparison is misleading, says Paton. The natural air conditioning in the greenhouse massively increases the value of that water. Because the plants need only an eighth of the water used by those grown conventionally, the effective cost is only a quarter that of water from a standard desalinator. And costs should plummet when mass production begins, he adds.
Best of all, the greenhouses should be environmentally friendly. “I suppose there might be aesthetic objections to large structures on coastal sites,” says Harris, “but it is a clean technology and doesn’t produce pollution or even large quantities of hot water.”
Your email address:
Your name:
© CoHuyenIELTS.com | 2022 | All Rights Reserved
Cô Huyền sẽ liên hệ trực tiếp với bạn qua email hoặc điện thoại trong 1-2 ngày tới để trao đổi cụ thể hơn về việc học.
Hoặc bạn cũng có thể chủ động liên hệ với cô giáo theo thông tin dưới đây để được xếp lớp sớm nhất.
Email: [email protected]
Xin cám ơn.
Để đăng ký học IELTS lớp cô Huyền, vui lòng điền form dưới đây để được tư vấn. Hoặc gọi điện trực tiếp cho cô giáo theo số +84.0383.096.717 để giữ chỗ.
Để đăng ký nhanh nhất, vui lòng liên hệ trực tiếp cho cô Huyền theo số:
Email: [email protected]
Địa chỉ: 63 Vũ Ngọc Phan, Láng Hạ, Đống Đa, Hà Nội